AI on GKE Assets
This repository contains assets related to AI/ML workloads on Google Kubernetes Engine (GKE).
Overview
Run optimized AI/ML workloads with Google Kubernetes Engine (GKE) platform orchestration capabilities. A robust AI/ML platform considers the following layers:
- Infrastructure orchestration that support GPUs and TPUs for training and serving workloads at scale
- Flexible integration with distributed computing and data processing frameworks
- Support for multiple teams on the same infrastructure to maximize utilization of resources
Infrastructure
The AI-on-GKE application modules assumes you already have a functional GKE cluster. If not, follow the instructions under infrastructure/README.md to install a Standard or Autopilot GKE cluster.
.
├── LICENSE
├── README.md
├── infrastructure
│ ├── README.md
│ ├── backend.tf
│ ├── main.tf
│ ├── outputs.tf
│ ├── platform.tfvars
│ ├── variables.tf
│ └── versions.tf
├── modules
│ ├── gke-autopilot-private-cluster
│ ├── gke-autopilot-public-cluster
│ ├── gke-standard-private-cluster
│ ├── gke-standard-public-cluster
│ ├── jupyter
│ ├── jupyter_iap
│ ├── jupyter_service_accounts
│ ├── kuberay-cluster
│ ├── kuberay-logging
│ ├── kuberay-monitoring
│ ├── kuberay-operator
│ └── kuberay-serviceaccounts
└── tutorial.md
To deploy new GKE cluster update the platform.tfvars
file with the appropriate values and then execute below terraform commands:
terraform init
terraform apply -var-file platform.tfvars
Applications
The repo structure looks like this:
.
├── LICENSE
├── Makefile
├── README.md
├── applications
│ ├── jupyter
│ └── ray
├── contributing.md
├── dcgm-on-gke
│ ├── grafana
│ └── quickstart
├── gke-a100-jax
│ ├── Dockerfile
│ ├── README.md
│ ├── build_push_container.sh
│ ├── kubernetes
│ └── train.py
├── gke-batch-refarch
│ ├── 01_gke
│ ├── 02_platform
│ ├── 03_low_priority
│ ├── 04_high_priority
│ ├── 05_compact_placement
│ ├── 06_jobset
│ ├── Dockerfile
│ ├── README.md
│ ├── cloudbuild-create.yaml
│ ├── cloudbuild-destroy.yaml
│ ├── create-platform.sh
│ ├── destroy-platform.sh
│ └── images
├── gke-disk-image-builder
│ ├── README.md
│ ├── cli
│ ├── go.mod
│ ├── go.sum
│ ├── imager.go
│ └── script
├── gke-dws-examples
│ ├── README.md
│ ├── dws-queues.yaml
│ ├── job.yaml
│ └── kueue-manifests.yaml
├── gke-online-serving-single-gpu
│ ├── README.md
│ └── src
├── gke-tpu-examples
│ ├── single-host-inference
│ └── training
├── indexed-job
│ ├── Dockerfile
│ ├── README.md
│ └── mnist.py
├── jobset
│ └── pytorch
├── modules
│ ├── gke-autopilot-private-cluster
│ ├── gke-autopilot-public-cluster
│ ├── gke-standard-private-cluster
│ ├── gke-standard-public-cluster
│ ├── jupyter
│ ├── jupyter_iap
│ ├── jupyter_service_accounts
│ ├── kuberay-cluster
│ ├── kuberay-logging
│ ├── kuberay-monitoring
│ ├── kuberay-operator
│ └── kuberay-serviceaccounts
├── saxml-on-gke
│ ├── httpserver
│ └── single-host-inference
├── training-single-gpu
│ ├── README.md
│ ├── data
│ └── src
├── tutorial.md
└── tutorials
├── e2e-genai-langchain-app
├── finetuning-llama-7b-on-l4
└── serving-llama2-70b-on-l4-gpus
Jupyter Hub
This repository contains a Terraform template for running JupyterHub on Google Kubernetes Engine. We've also included some example notebooks ( under applications/ray/example_notebooks
), including one that serves a GPT-J-6B model with Ray AIR (see here for the original notebook). To run these, follow the instructions at applications/ray/README.md to install a Ray cluster.
This jupyter module deploys the following resources, once per user: - JupyterHub deployment - User namespace - Kubernetes service accounts
Learn more about JupyterHub on GKE here
Ray
This repository contains a Terraform template for running Ray on Google Kubernetes Engine.
This module deploys the following, once per user: - User namespace - Kubernetes service accounts - Kuberay cluster - Prometheus monitoring - Logging container
Learn more about Ray on GKE here
Important Considerations
- Make sure to configure terraform backend to use GCS bucket, in order to persist terraform state across different environments.
Licensing
- The use of the assets contained in this repository is subject to compliance with Google's AI Principles
- See LICENSE